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A theoretical model has to stand the test against the real world to be of any practical use. The first step is to
identify parameters in the model estimated from experimental data. In many applications where renewal point
data are available, models of first-hitting times of underlying diffusion processes arise. Despite the seemingly
simplicity of the model, the problem of how to estimate parameters of the underlying stochastic process has
resisted solution. The few attempts have either been unreliable, difficult to implement, or only valid in subsets
of the relevant parameter space. Here we present an estimation method that overcomes these difficulties, is
computationally easy and fast to implement, and also works surprisingly well on small data sets. The method
is illustrated on simulated and experimental data. Two common neuronal models—the Ornstein-Uhlenbeck and
Feller models—are investigated.
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The first-hitting time to a constant threshold of a diffusion
process has been in focus for stochastic modeling of prob-
lems where a hidden random process only shows when it
reaches a certain level that triggers some observable event.
Applications come from various fields: e.g., biology, survival
analysis, mathematical finance, and others. The application
in this paper originates from neuronal modeling. Neurons
transfer information by emitting electrical pulses �spikes�,
and diffusion models describe the underlying dynamics of
the interspike intervals �ISIs�. They represent the time evo-
lution of the neuronal membrane depolarization, modeled by
a scalar process Xt given by an Itô stochastic differential
equation

dXt = ��Xt,��dt + ��Xt,��dW�t�, X0 = x0, �1�

where � and � are real-valued functions �the infinitesimal
drift and variance�, � is a p-dimensional parameter, and W�t�
is a standard Wiener process �Brownian motion�. An alterna-
tive description to Eq. �1� is the Fokker-Planck equation for
the transition density f��x , t �x0 ,0� �1�.

Firing of spikes is not an intrinsic part of model �1�, so a
firing threshold has to be imposed. A firing event occurs
when the membrane voltage Xt exceeds a voltage threshold
for the first time, here assumed to be a constant S�x0. After
a spike, the membrane depolarization is reset to the initial
value. Formally, the ISIs are identified with the first-passage
time �hitting time� of Xt across S,

T = inf�t � 0: Xt � S�X0 = x0 � S� . �2�

Thus, we assume the ISIs form a renewal process—i.e., that
they are independent and identically distributed. The proper-
ties of the random variable T including its probability density

function g��t �x0 ,S�=g��t� have been extensively studied. The
distribution g��t� is only known for a few simple models, and
approximation techniques have been devised �2�, of which
many are based on the renewal equation, the so-called
Fortet’s equation �3,4� relating the first-passage-time density
and the transition density f��·� for x�S,

f��x,t�x0,0� = �
0

t

f��x,t�S,��g����x0,S�d� . �3�

We write F��x , t−s �xs�=	xf��u , t �xs ,s�du for the correspond-
ing transition distribution function.

Estimation of � has been extensively studied; see e.g.,
�5–8�, or �9–11� in the neuronal context. All these methods
are based on complete or partial observations of the trajec-
tory of X�t�. However, if only first-passage times are avail-
able, attempts to solve the estimation problem are rare; some
references are �12–14�. We proposed Laplace-transform mo-
ment estimators for two specific diffusion models �15,16�;
see also the cited papers therein. These estimators have cer-
tain drawbacks: e.g., they are only valid in a subspace of the
parameter space �17� and the variance parameter is poorly
determined. Recently we proposed a method based on an
integral equation applicable to any one-dimensional diffusion
process with known transition density �18�, which we will
apply in this paper.

Parameter estimation. Consider the sample t1 , . . . , tn of n
independent observations of T from which � will be esti-
mated. The method applies the integral equation �3� as de-
scribed in the following; see also �18�. The probability

P�Xt � S�X0 = x0� = 1 − F��S,t�x0� �4�

can alternatively be calculated by the transition integral
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P�Xt � S�X0 = x0� = �
0

t

g��u��1 − F��S,t − u�S��du . �5�

For fixed �, Eq. �4� is a function of t and can be calculated
directly. The value of Eq. �5� can be estimated at t from the
sample by the average

1

n


i=1

n

�1 − F��S,t − ti�S��1�ti	t�, �6�

where 1A is the indicator function of the set A, since it is the
expected value of

1T��0,t��1 − F��S,t − T�S�� , �7�

with respect to the distribution of T for fixed �. A statistical
error measure is then defined as the maximum over t of the
distance between �4� and �6�, suitably normalized by divid-
ing by 
���=supt�0�1−F��S , t �x0�� so that �4� will vary be-
tween 0 and 1 for all �. To find the maximum over t a grid on
the positive real line has to be chosen. A good choice for
fixed � is the set �t�R+ : �1−F��S , t �x0�� /
���= i /N , i
=1, . . . ,N−1� for some reasonably large number N. In the
applications below N=100. The estimator of � is finally ob-
tained by minimizing this error function over the parameter

space. The estimate is denoted �̂.
Ornstein-Uhlenbeck neuronal model. A phenomenological

way to introduce stochasticity into the deterministic leaky-
integrator model dx�t� /dt=−x�t� /�+� is by assuming an ad-
ditional term of Gaussian white noise. This model is a spe-
cial case of model �1� for which

��x� = −
x

�
+ �, ��x� = � � 0, x0 = 0, �8�

where ��0 is the membrane time constant and � and � are
constants characterizing neuronal input. Model �8� is the
Ornstein-Uhlenbeck �OU� process �1,15,19–22�. The transi-
tion density function is Gaussian,

f��x,t� = �2�Vt�−1/2 exp�− �x − Mt�2/�2Vt�� , �9�

where Mt=���1−e−t/�� and Vt=�2��1−e−2t/�� /2. Despite
many efforts, an analytical solution for the first-passage-time
density has only been found for S=�� �20,23,24�.

Two types of parameters appear: the intrinsic parameters
and the parameters characterizing the input �25�. The intrin-
sic parameters are constants given prior to the verification of
the model: the firing threshold S, the initial depolarization x0,
and the membrane time constant � reflecting spontaneous
voltage decay in absence of input. The input parameters are
related to the signal coded by the neuron: � characterizes the
depolarization of the membrane between spikes, and � char-
acterizes the random variability in the depolarization pro-
cess.

It is convenient to reformulate models �1� and �8� to the
equivalent dimensionless form

dYs = �− Ys + 
�ds + �dWs, Y0 = 0, �10�

where

s =
t

�
, Ys =

Xt

S
, Ws =

Wt

��
, 
 =

��

S
, � =

���

S
,

�11�

and T /�=inf�s�0:Ys�1�. It shows that only two param-
eters are identifiable from ISI data, in contrast to when
sample trajectories of the process are available. Therefore,
without loss of generality, all considerations in the following
will be related to the dimensionless process Ys and its first
crossing of the level 1. Note, however, that the model now
operates on the time scale of s= t /�, not on the original mea-
sured time scale. All observed ISIs thus have to be trans-
formed by dividing by �. The membrane time constant has to
be assumed or otherwise estimated from other types of data.
Increasing 
 results in shorter ISIs. Increasing � when 

�1 increases the ISI variability, whereas in the subthreshold
regime �26� showed that the coefficient of variation was non-
monotone as a function of the noise level.

Let ��·� be the normal cumulative distribution function.
Combining �4� and �9� we obtain

P�Ys � 1�Y0 = 0� = �� 
�1 − e−s� − 1
�1 − e−2s�/�2


 , �12�

which we estimate from the sample using �6� by

1

n


i=1

n

��
 − 1

�/�2
�1 − e−�s−si�

1 + e−�s−si�
1�si	s�, �13�

where si= ti /�. The normalizing constant is given by
���
−1� / �� /�2�� for 
�0 and ��−�1−2
 / �� /�2�� for


�0. Then 
̂ and �̂ can be transformed to physically inter-
pretable quantities of � and � through �11�.

Simulated data. Trajectories of the OU process were
simulated according to the Euler scheme for four different
combinations of parameter values: �
 ,��= �0.8,1�, �1,0.1�,
�2,0.1�, and �2,1�, respectively. The process was run until the
trajectory reached the threshold where the time was re-
corded. We generated 1000 samples with 10 observations
each for each combination of parameter values. This was
repeated for sample sizes of 50, 100, and 500, respectively.
On all samples 
 and � were estimated; estimation results
are summarized in Fig. 1, where the densities of the esti-
mates for different sample sizes are plotted. The estimators
behave well even for sample sizes of only 50 observations.
Thus, we expect the method to be reliable if the data are well
described by the OU model. As appears from Fig. 1, the
estimators seem asymptotically well described by a normal
distribution, which can be used to construct confidence inter-
vals. In Table I mean and standard deviations of the samples
of 1000 estimates are reported for all combinations of param-
eter values and sample sizes. A reasonable confidence inter-
val would then be the estimate ±2 times the standard devia-
tion. As would be expected, the standard deviation of the
estimator seems approximately proportional to � and in-
versely proportional to the square root of the sample size.

Auditory thalamic neurons in guinea pigs. The first two
sets of experimental ISI data were recorded intracellularly
from the auditory system of a guinea pig �for details of the

SUSANNE DITLEVSEN AND PETR LANSKY PHYSICAL REVIEW E 76, 041906 �2007�

041906-2



stimulation protocol, data acquisition, and processing see
�27��. The first set contains ISIs during the spontaneous ac-
tivity, and being based on the intracellular data �not only the
ISIs�, the parameters were also estimated by standard proce-
dures �10�. This permits us to evaluate the new estimation
procedure. Moreover, intracellular data gives “exact” infor-
mation about the threshold value, the reset value, and the
membrane time constant. The second set, obtained from the
same neuron, contains the first ISIs within the stimulation

period. The intrinsic parameters were considered to be the
same as for the spontaneous activity.

The spontaneous record consists of 312 ISIs. In �10� the
intrinsic parameters were estimated to S−x0=11 mV and �
=39 ms. Transforming the observed ISIs by dividing by this
�, the dimensionless parameters were estimated to 
̂=0.852
and �̂=0.094. Using �11� we obtain the following estimates
for the input parameters: �̂=0.240 V/s and �̂=0.005 V/�s.
In �10� the median values for these were 0.285 V/s for �
with most estimates falling in the range 0.1–0.45 V/s, and
0.014 V/�s for � with most estimates falling in the range
0.01–0.016 V/�s. Note that since we base the estimation on
the hitting times, we obtain only one set of estimates for the
entire record, whereas in �10� the estimation is based on
intracellular observations and different sets of estimates for
the input parameters are obtained for each ISI. Both param-
eters estimated only with the information contained in the
hitting times were of the same order of magnitude as the
estimations using all the information in the data set. A mean
parameter is easier to estimate than a variance parameter, and
accordingly � appears precisely determined judged by the
estimation from the intercellular recording.

The stimulated record consists of 83 ISIs. Using the in-
trinsic parameters estimated from the spontaneous part, we

estimated 
̂=4.79 and �̂=0.625, obtaining �̂=1.351 V/s
and �̂=0.035 V/�s. Note that the value of �, which reflects
intensity of stimulation, is 5-6 times larger than for the spon-
taneous activity.

To check the adequacy of the OU model with the esti-
mated parameter values for these data, Eq. �12� and the em-
pirical equation �13� are compared in Fig. 2, after dividing

by ���
̂−1� / ��̂ /�2��. Especially the stimulated record
shows a good fit.

Feller neuronal model. In many applications the OU pro-
cess is unrealistic because it is unbounded. Introducing an
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FIG. 1. Densities of estimates for simulated data based on 1000 estimates. Upper panels: estimates of 
. Lower panels: estimates of �.
Solid black lines: sample sizes of 500. Dashed black lines: sample sizes of 100. Solid gray lines: sample sizes of 50. Dashed gray lines:
sample sizes of 10. Vertical lines: true values used in the simulations: �A�, �E� �
 ,��= �0.8,1�; �B�, �F� �
 ,��= �1,0.1�; �C�, �G� �
 ,��
= �2,0.1�; �D�, �H� �
 ,��= �2,1�. Note different scales.

TABLE I. Summary of estimates from data simulated from
model �10�. The last two columns are sample mean±sample stan-
dard deviation �SSD� of estimates.

Parameter
value �
 ,��

Sample
size

Estimates of 

mean±SSD

Estimates of �
mean±SSD

�0.8, 1� 10 1.086±0.276 0.759±0.255

�0.8, 1� 50 0.881±0.164 0.910±0.141

�0.8, 1� 100 0.838±0.127 0.943±0.107

�0.8, 1� 500 0.796±0.061 0.975±0.046

�1, 0.1� 10 1.011±0.084 0.027±0.034

�1, 0.1� 50 1.000±0.016 0.097±0.018

�1, 0.1� 100 0.999±0.012 0.099±0.013

�1, 0.1� 500 0.998±0.005 0.100±0.006

�2, 0.1� 10 1.992±0.043 0.097±0.039

�2, 0.1� 50 1.996±0.018 0.097±0.012

�2, 0.1� 100 1.996±0.013 0.098±0.009

�2, 0.1� 500 1.996±0.006 0.099±0.004

�2, 1� 10 2.035±0.441 0.899±0.268

�2, 1� 50 1.978±0.206 0.953±0.129

�2, 1� 100 1.973±0.151 0.967±0.090

�2, 1� 500 1.965±0.065 0.977±0.040
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inhibitory reversal potential VI�x0�S leads to model �1�
with

��x� = −
x

�
+ �, ��x� = ��x − VI, �14�

where 2���2. In dimensionless form it becomes

dYs = �− Ys + 
�ds + ��/�
��YsdWs, 0 � y0 � 1,

�15�

2�
/��2 � 1,

where

Ys = �Xt − VI�/�S − VI� ,


 = ��� − VI�/�S − VI� ,

and

� = ������ − VI/�S − VI� .

Model �15� is known as the Feller process �16,28,29�, or the
CIR process in mathematical finance �30�. The transition
density follows a noncentral �2 distribution F�2�·� �30�. The
integral equation becomes

1 − F�2�a�s�,�,��s,y0��

= �
0

s

f�u��1 − F�2�a�s − u�,�,��s − u,1���du , �16�

with a�s�=4
 / ��2�1−e−s��, degrees of freedom �=4�
 /��2,
and noncentrality parameter

��s,y0� = �4
y0/�2��e−s/�1 − e−s�� .

The normalizing constant is given by

�1 − F�2�4
/�2,�,0�� .

Spontaneous firing of olfactory receptor neurons in rats.
The next sets of ISIs were obtained during spontaneous ac-
tivity of normally breathing and tracheotomized rats �for de-
tails see �31,32��. No information on intrinsic parameters

was available, and we could find no values in the literature
for this specific type of neurons. In �33� �p. 56� the values of
the membrane time constant are given as ranging from
10 to 50 ms. We assume that sensory neurons, despite differ-
ent modalities, have similar membrane time constants, and
we therefore used the values from the previous application of
39 ms. There were 24 data records containing between 27
and 1907 ISIs in each record. Both the OU model and the
Feller model were fitted. Summaries are given in Table II.

TABLE II. Summary of estimates from olfactory neurons for
S−x0=11 mV, �=39 ms, and x0−VI=11 mV.

Mediana Rangea Medianb Rangeb

�̂ �V/s� 0.030 −0.059–0.218 −0.007 −0.108–0.212

�̂c 0.041 0.017–0.078 0.208 0.085–0.722

aOU model, all 24 olfactory neurons.
bFeller model, 18 olfactory neurons.
cUnits: �V/�s� �OU�, ��V/s� �Feller�.
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FIG. 3. Olfactory neurons. �A�, �B�, �C� Neuron that fits the
models. �D�, �E�, �F� Neuron that did not fit the models. �A�, �D�
OU model, normalized comparison of the right-hand side of Eq.
�12� �solid lines� to the empirical equation �13� �dashed lines�, cal-
culated with estimated parameters. Vertical axes can be interpreted
as a cumulative probability; horizontal axes are ISIs �s�. �B�, �E�
Likewise for the Feller model. �C�, �F� Corresponding spike trains
consisting of 100 spikes. Note different time axes.
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Some neurons showed an acceptable fit to both models, and
some did not fit at all; see Fig. 3 for examples. For six
neurons the Feller model could not be fitted. The ISIs do not
contain enough information to distinguish between the two
models, and the choice of model has to be based on physical
reasons or other types of data: e.g., intracellular recordings.
To appreciate the qualitatively different behavior of the neu-
rons that fit and did not fit, respectively, in the lower part of
Fig. 3 are typical patterns of activity �spike trains� pictured
for the same two neurons. Only the first 100 spikes of the
records are plotted, such that both time series contain the
same number of spikes. Typically, the neurons that did not fit
had a tendency to clustering of spikes with bursts and rela-
tively long periods of silence. The bursting type of activity of
these neurons was already mentioned in �31�. When neurons
show bursting behavior, the assumption of independent and
identically distributed ISIs is obviously violated. In this case

more elaborate models taking account of the autocorrelation
should be considered. Moreover, neither the OU nor Feller
model can produce this combination of many short ISIs with
a heavy tail of long ISIs in the distribution.

In conclusion, we have presented a method to compare
stochastic diffusion models with experimental data of first-
hitting times, providing seemingly good estimators for physi-
cal quantities previously considered very difficult to obtain.
Also a diagnostic tool for model evaluation is provided.
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